Teachers in Residence

The Musculoskeletal System

Secondary Level Lesson Plan

Centre for Research in Medical Devices
“Breaking Barriers”

THE PHILOSOPHY BEHIND OUR LESSON PLANS

Teachers participating in CÚRAM’s Teachers in Residence programme have developed a ‘learning module’ on MedTech in Ireland that links with multiple streams and themes in the primary and junior cycle curricula. The primary and secondary lesson plans were created by teachers for teachers and are accessible online to use in classrooms all over the world.

During their residencies, teachers developed the contents of the lesson plans by working directly with CÚRAM researchers, while learning about the medical devices research being carried out at CÚRAM. Primary teachers were paired with secondary teachers to create plans covering five major themes: biomaterials, heart, brain, musculoskeletal system and stem cells. The partnership between the primary and secondary teachers ensured that the materials created follow a natural progression from one age group to the next.

The lesson plans were further designed and formatted by a Visual Artist who used various teaching methodologies to suit the multiple intelligences and range of learning styles and abilities present in classrooms. By using a range of teaching approaches we hope to engage all children at all levels whatever their natural talents or interests may be.

All presentations, lesson plan booklets and optional resources are free to download at: http://www.curamdevices.ie/curam/public-engagement/teachers-in-residence/. We hope that you and your students find these resources an enjoyable way to learn about our research centre and the MedTech industry!

Sincerely,

Dr. Sarah Gundy
Programme Manager-Teachers in Residence
Secondary School Curriculum Links

Strand One: The Nature of Science

Element:

Understanding about Science

Students should be able to:

1. *Appreciate* how scientists work and how scientific ideas are modified over time.

Element:

Investigating in Science

Students should be able to:

3. *Design, plan* and *conduct* investigations; *explain* how reliability, accuracy, precision, fairness, safety, ethics and selection of suitable equipment have been considered.

Element:

Science in Society

Students should be able to:

10. *Appreciate* the role of science in society; and its personal, social and global importance; and how society influences scientific research.
Strand Five: Biological world

Element:
Systems and Interactions
Students should be able to:

6. *Evaluate* how human health is affected by: inherited factors and environmental factors including nutrition; lifestyle choices.

Element:
Sustainability
Students should be able to:

9. *Discuss* medical, ethical, and societal issues.

Learning Outcomes

Children should be enabled to:

1. Identify the main parts of the human skeleton and state the main functions of the musculoskeletal system.
2. Describe the general structure and action of muscles (working in opposition).
3. State the function of tendons and the relationship between these and bones.
5. Appreciate what a medical device is.
6. Construct a paper model of the human hand.
7. Problem-solve ways of how to fix a tendon that has been cut in the hand.
8. Demonstrate the relationships between bones, tendons and muscles by use of model.

9. Appreciate that the suitability of biomaterials are based on the properties of the biomaterials and their ability to match the original tissue.

Keywords and Definitions

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bones</td>
<td>Make up the skeleton and provide support and protection to the body.</td>
</tr>
<tr>
<td>2. Long bone</td>
<td>Bones that support the weight of the body and facilitate movement. (Femur, tibia, humerus)</td>
</tr>
<tr>
<td>3. Short bone</td>
<td>Bones that provide stability and some movement. (Carpals and tarsals)</td>
</tr>
<tr>
<td>4. Irregular bone</td>
<td>Bones that have a complex shape, which help to protect internal organs. (Vertebrae, sacrum, coccyx)</td>
</tr>
<tr>
<td>5. Flat bone</td>
<td>Bones that protect internal organs. (Sternum, scapula, ribs)</td>
</tr>
<tr>
<td>6. Osteogenic cells</td>
<td>Bone cells that develop into osteoblasts. The only bone cells that divide.</td>
</tr>
<tr>
<td></td>
<td>Term</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>7</td>
<td>Osteoblasts</td>
</tr>
<tr>
<td>8</td>
<td>Osteocytes</td>
</tr>
<tr>
<td>9</td>
<td>Osteoclasts</td>
</tr>
<tr>
<td>10</td>
<td>Muscle</td>
</tr>
<tr>
<td>11</td>
<td>Flexion</td>
</tr>
<tr>
<td>12</td>
<td>Extension</td>
</tr>
<tr>
<td>13</td>
<td>Antagonistic pairs</td>
</tr>
<tr>
<td>14</td>
<td>Agonist</td>
</tr>
<tr>
<td>15</td>
<td>Antagonist</td>
</tr>
<tr>
<td>16</td>
<td>Joint</td>
</tr>
<tr>
<td></td>
<td>Joint Type</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>17.</td>
<td>Pivot joint</td>
</tr>
<tr>
<td>19.</td>
<td>Saddle joint</td>
</tr>
<tr>
<td>20.</td>
<td>Plane joint</td>
</tr>
<tr>
<td>21.</td>
<td>Ball-and-socket joint</td>
</tr>
<tr>
<td>22.</td>
<td>Condyloid joint</td>
</tr>
<tr>
<td>23.</td>
<td>Ligament</td>
</tr>
<tr>
<td>24.</td>
<td>Cartilage</td>
</tr>
<tr>
<td>25.</td>
<td>Tendon</td>
</tr>
<tr>
<td>26.</td>
<td>Strain</td>
</tr>
<tr>
<td>27.</td>
<td>Sprain</td>
</tr>
</tbody>
</table>
Learning Activities

Children will:

• Complete The K and W parts of the KWL Chart.
• Engage in talk and discussion on the musculoskeletal system.
• Participate in a group activity to construct a model hand and repair it using a selection of materials.
• Present their work to the class.
• Engage in talk and discussion on biomaterials and medical devices.
• Evaluate their work.
• Fill in the L Part of the KWL Chart.

Extra Info / Files

<table>
<thead>
<tr>
<th>Web Address</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. www.youtube.com/watch?v=94Q-fvCAJzQ</td>
<td>“Muscle Basics: What Athletes Need to Know About the Muscular System”</td>
</tr>
<tr>
<td>2. www.youtube.com/watch?v=0vlLiPT_Otw</td>
<td>“Bone Basics: How They Heal and How to Keep them Healthy”</td>
</tr>
</tbody>
</table>

28. Arthroscope Flexible tube with a camera that can be inserted into the body.
3. www.youtube.com/watch?v=hdes6W76Oow “The Basic Science of Tendons and Tendinitis”

4. theinteractivehand.worldsecsystems.com/ Website exploring the hand including tendons and bones.

5. www.innerbody.com/image/skel13.html 2D and 3D views of the hand

Resources Provided

- Teacher Lesson Plan
- PowerPoint to guide lesson
- Hand template
- Interactive KWL worksheet
- Evaluation worksheet
- Optional: “Mending Legends”- A 26 minute documentary produced by CÚRAM exploring the physical and psychological impact of tendon injuries amongst sports players, and highlighting the progressive attitudes towards scientific research in Ireland. A trailer to the film can be viewed using the following link: https://vimeo.com/189779551. The film is available on request by contacting Sarah at sarah.gundy@nuigalway.ie.
Materials Needed

- Hand template printed out on thicker paper (can use regular paper)
- Scissors
- String
- Straws (large)
- Tape
- Toothpicks
- Paperclips
- Thread, yarn or ribbon
- Ice lolly sticks
- Elastic bands
- Pipe cleaners

Instructions

- Divide the class into groups of two, three or four depending on class size and amount of materials.
- Each student is given a hand template, scissors, string, a straw and tape.
- Each student or group of students is given a “Biomedical Engineering Kit” containing any assortment of the following: Toothpicks, paperclips, thread, yarn, ribbon, ice lolly sticks, elastic bands, pipe cleaners, and/or string.
- Each student cuts out the hand following the dashed lines on the hand template.
- The students cut up a straw into three pieces to fit onto the bones of the finger.
• Make sure the students cut the straws small enough in order to leave enough space between them when they are taped to the paper finger!

• The students tape a piece of string to the red bone at the tip of the finger.
• The students put the string through the three pieces of cut up straw.
• The students tape the three pieces of cut up straw to the blue, green and yellow bones of the paper finger.
 o Make sure the students leave a big space between the straws!
 o Make sure the students do not tape the string!
• The students bend the paper between the straws for the finger to move easier.
• The students repeat the procedure for the remaining fingers.
• Once the hand is finished, the students use scissors to cut the string between two straws on a finger.
 o The cut to the string acts like a damaged tendon.
• The students repair the “tendon” using the biomaterials available in the “Biomedical Engineering Kit”.
• Option: Hand templates can be cut out, and string and straws can be cut up for students ahead of the lesson to make it a bit easier or save time.
Teachers’ Tips

- Students should construct the hand one finger at a time. That way if time is running short they will still have a finger to damage and repair.
- If available, a three dimensional model of the skeleton is beneficial for the lesson.
- There is no right or wrong answer to how the students fix their tendon. The idea is to get them thinking about what materials would be appropriate to maintain movement in the finger.
- Some students just use another piece of string to fix the tendon which is perfectly acceptable and is analogous to a tendon replacement using the palmaris longus as discussed in the PowerPoint presentation!

Methodologies

- Talk and discussion
- Active learning
- Guided and discovery learning
- Collaborative learning
- Free exploration of materials
- Investigative approach

Assessment

- Self-assessment – evaluation worksheet
- Teacher observation – construction of medical devices
- Teacher questioning – KWL, talk and discussion
Linkage and Integration

- **Maths** – problem solving
- **STEM** – I.T. / Engineering
- **Art** – construction
- **S.P.H.E.** – working together co-operatively
- **English** – oral language through talk and discussion and presenting their work

Differentiation by:

- Teaching style
- Support
- Task
Introducing the MUSCULOSKELETAL system

Teachers in Residence Programme
Andrew Fogarty and Clive Monahan
Class discussion around the Musculoskeletal System

- Why do you require a skeleton?
- What is it made from?
- Is it living tissue?
- Can you name bones?
- How does the skeleton allow for movement?
- Explain the functions of muscles?
- What are tendons?
- What can go wrong with the musculoskeletal system?

Musculoskeletal System

- Muscles
- Cartilage
- Bones
- Tendons
- Joints and Ligaments
Bones-Human Skeleton

How many bones do you have?

You have:

300 bones at birth

206 bones by adulthood
Bones-Functions

- Give structure & support
- Movement
- Protect vital organs
- Make blood cells

Bones-Types

- Long bone
- Short bone
- Irregular bone
- Flat bone

Can you give examples?
Muscles-Antagonistic Pairs

As you bend your elbow and raise your forearm which muscle is contracting?

As you straighten your elbow and lower your forearm which muscle is contracting?

What are the antagonist muscles and what are they doing?

Joints
• Connect bones to bones
• Six types:
 • Pivot
 • Hinge
 • Saddle
 • Plane
 • Condyloid
 • Ball-and-Socket

Slide 11

Slide 12
Joints-Cartilage and Ligaments

Tendons-Connect Muscles to Bones
Do you have this tendon in your wrist?

Most people have it
14% of people do not have it
Was used by humans years ago to flex the wrist
Not needed anymore and can be removed
Can be used to replace damaged tendons

Damage to MS System

<table>
<thead>
<tr>
<th>What</th>
<th>Damage</th>
<th>Medical Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bones</td>
<td>• Simple fracture</td>
<td>• Cast</td>
</tr>
<tr>
<td></td>
<td>• Compound fracture</td>
<td>• Plates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pins</td>
</tr>
<tr>
<td>Muscles</td>
<td>• Strain</td>
<td>• RICE</td>
</tr>
<tr>
<td></td>
<td>• Tears</td>
<td>• Brace</td>
</tr>
<tr>
<td>Cartilage</td>
<td>• Break down</td>
<td>• Assess damage with arthroscope</td>
</tr>
<tr>
<td></td>
<td>• Tears</td>
<td>• Clean with saline solution</td>
</tr>
<tr>
<td></td>
<td>• Loose pieces</td>
<td></td>
</tr>
<tr>
<td>Ligaments</td>
<td>• Sprain</td>
<td>• Brace</td>
</tr>
<tr>
<td></td>
<td>• Tears</td>
<td>• Surgery</td>
</tr>
<tr>
<td>Tendons</td>
<td>• Tears</td>
<td>• RICE</td>
</tr>
<tr>
<td></td>
<td>• “Snapped”</td>
<td>• Splint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Brace</td>
</tr>
</tbody>
</table>
You will be a Biomedical Engineer to repair a damaged tendon!

Achilles Tendon Tear

Step 1-
Make a hand

Straws (Bones)
String (Tendons)

Each finger gets 3 straws that act as bones
Each finger gets 1 string that acts as the tendons
Make sure you leave a big space between the straws!
Step 1 - Make a hand

Tape the string to the tip of the finger **here**

Tape the 3 straws to the paper

Do not tape the string!

Bend the paper between the straws for the fingers to move easier
Step 2-
Damage and repair tendon

Use your scissors to cut the string between two straws

Repair your “tendon” using the biomaterials available in your Biomedical Engineering Kit
1.) Do you think your medical device is successful? Why or why not?

2.) If you were building the medical device again, what would you do differently?

3.) Answer the questions on the worksheet.
References:
1. commons.wikimedia.org
2. www.flickr.com
3. Gray’s Anatomy

Acknowledgements:

Sincere thanks to all of the researchers who gave lectures and generously gave their time throughout the course.

Thanks also to all the participating teachers who very kindly shared ideas and resources.
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073.

This project has been funded by the European Union Seventh Framework Programme under Marie Curie Initial Training Networks (FP7-PEOPLE-2012-ITN) and Grant Agreement Number 317304 (AngioMatTrain). This project has also been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Networks and Grant Agreement Numbers 676408 (BrainMatTrain) and 676338 (Tendon Therapy Train).
<table>
<thead>
<tr>
<th>Topic: Musculoskeletal System</th>
<th>What I Know</th>
<th>What I Want to Know</th>
<th>What I Learned</th>
</tr>
</thead>
</table>
Musculoskeletal System

Secondary Level Worksheet

Please answer the following questions into your exercise copy:

1. Explain why bones may be described as living tissue.
2. Outline the main functions of the skeleton.
3. Name the organ that is protected by the skull.
4. List the three main bones in the (i) arm and (ii) leg.
5. State another name for the collar bone.
6. What is the purpose of a joint in the skeleton?
7. Describe three types of joints giving examples of each.
8. Explain the impact of diet on healthy bones.
9. Outline the difference between ligaments and tendons.

Reflection using 3-2-1 method:
Please reflect on the activities you have completed and include the following into your exercise copy:

- 3 new pieces of information
- 2 interesting facts
- 1 question
FACTS ABOUT MEDTECH IN IRELAND

- Ireland is the second largest exporter of MedTech products in Europe.
- Ireland’s MedTech sector employs 29,000 people across 450 companies.
- Ireland has the highest number of people working in the MedTech industry than in any other European country, per head of population.
- 18 of the world’s top 25 MedTech companies have a base in Ireland.
- Galway employs one third of the country’s MedTech employees.

A wide range of products relevant to treating damaged musculoskeletal tissues are manufactured in Ireland. These include hip and knee implants, bone cement, and surgical blades used for cutting and shaping bones. In fact, 75% of global orthopaedic knee production comes from Ireland. Stryker is one of the world’s leading MedTech companies producing medical devices to treat the musculoskeletal system. Stryker has four manufacturing sites and a Research and Development Innovation Centre based in Cork and Limerick. Zimmer Biomet, with facilities in Galway and Shannon, supplies hospitals and orthopaedic surgeons with implants for hips, knees, extremities, spine and trauma.

Source: IDA Ireland, 2017
ACKNOWLEDGEMENTS

The participants of the 2017-2018 Teachers in Residence Programme: Vivienne Kelly, Louise Lynch, Mary McDonald, Anna McGuire, Sinéad O'Sullivan, Karen Conway, Claire Cunningham, Ali Donald, Anne Hession and Mairead McManus.

Niamh Burke and Rachel Duggan, the participants of the 2015-2016 Teachers in Residence Programme.

Sadie Cramer, the Visual Artist who designed the graphics and layouts of the lesson plans.

The researchers who lectured to and helped develop the lesson plans with the educators: Emmanuela Bovo, James Britton, Hector Capella, Joshua Chao, Ankit Chaturvedi, Paolo Contessotto, Mikey Creane, Marc Fernández, Cathal Ó Flatharta, Hakima Flici, Ana Fradinho, Silvia Cabre Gimenez, Jill McMahon, Luis Martins, Renza Spelat, Maura Tilbury, Alexander Trottier and Dimitrios Zeugolis.

Veronica McCauley and Kevin Davison, from the School of Education, and Matt Wallen, Principal of Knocknacarra Educate Togethern National School, who contributed to the development of the programme.

The individuals who presented to the educators about on-going outreach programmes: Claire Concannon, Muriel Grenon, Enda O’Connell, Jackie O’Dowd and Brendan Smith.

Nóirín Burke and all the staff at the National Aquarium for the workshops given to the primary students.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073.

This project has been funded by the European Union Seventh Framework Programme under Marie Curie Initial Training Networks (FP7-PEOPLE-2012-ITN) and Grant Agreement Number 317304 (AngioMatTrain). This project has also been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Networks and Grant Agreement Numbers 676408 (BrainMatTrain) and 676338 (Tendon Therapy Train).