Teachers in Residence

The Brain and Spinal Cord

Secondary Level Lesson Plan

curam
Centre for Research in Medical Devices
“Breaking Barriers”

THE PHILOSOPHY BEHIND OUR LESSON PLANS

Teachers participating in CÚRAM’s Teachers in Residence programme have developed a ‘learning module’ on MedTech in Ireland that links with multiple streams and themes in the primary and junior cycle curricula. The primary and secondary lesson plans were created by teachers for teachers and are accessible online to use in classrooms all over the world.

During their residencies, teachers developed the contents of the lesson plans by working directly with CÚRAM researchers, while learning about the medical devices research being carried out at CÚRAM. Primary teachers were paired with secondary teachers to create plans covering five major themes: biomaterials, heart, brain, musculoskeletal system and stem cells. The partnership between the primary and secondary teachers ensured that the materials created follow a natural progression from one age group to the next.

The lesson plans were further designed and formatted by a Visual Artist who used various teaching methodologies to suit the multiple intelligences and range of learning styles and abilities present in classrooms. By using a range of teaching approaches we hope to engage all children at all levels whatever their natural talents or interests may be.

All presentations, lesson plan booklets and optional resources are free to download at: http://www.curamdevices.ie/curam/public-engagement/teachers-in-residence/. We hope that you and your students find these resources an enjoyable way to learn about our research centre and the MedTech industry!

Sincerely,

Dr. Sarah Gundy
Programme Manager-Teachers in Residence
Secondary School Curriculum Links

Strand One: The Nature of Science

Element:
Understanding About Science

Students should be able to:

1. *Appreciate* how scientists work and how scientific ideas are modified over time.

Element:
Investigating in Science

Students should be able to:

3. *Design, plan* and *conduct* investigations; *explain* how reliability, accuracy, precision, fairness, safety, ethics and selection of suitable equipment have been considered.

Element:
Science in Society

Students should be able to:

10. *Appreciate* the role of science in society; and its personal, social and global importance; and how society influences scientific research.
Strand Five: Biological World

Element:
Systems and Interactions
Students should be able to:

6. Evaluate how human health is affected by: inherited factors and environmental factors including nutrition; lifestyle choices.

Element:
Sustainability
Students should be able to:

9. Discuss medical, ethical, and societal issues.

Learning Outcomes

Children should be enabled to:

1. Understand what a neuron is.
2. Understand how a neuron sends and receives a message.
3. Know the general function of neurotransmitters.
4. Be familiar with some of the symptoms of Parkinson’s disease.
5. Know the cause of Parkinson’s disease - lack of dopamine.
6. Be familiar with the concept of Deep Brain Stimulation as a treatment for Parkinson’s disease.
7. Understand the importance of using appropriate biomaterials to design medical devices.
8. Recognise why the design of a medical device is important for its function.
9. Design a medical device.
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuron</td>
<td>A specialised cell that can send and receive messages using neurotransmitters.</td>
</tr>
<tr>
<td>Synapse</td>
<td>A gap between two neurons that a message must jump across.</td>
</tr>
<tr>
<td>Neurotransmitter</td>
<td>Chemicals made by neurons that carry messages across synapses.</td>
</tr>
<tr>
<td>Presynaptic Neuron</td>
<td>The neuron before a synapse that transmits a message using a neurotransmitter.</td>
</tr>
<tr>
<td>Postsynaptic Neuron</td>
<td>The neuron after a synapse that receives a message from a neurotransmitter.</td>
</tr>
<tr>
<td>Dopamine</td>
<td>A type of neurotransmitter made by neurons in the brain.</td>
</tr>
<tr>
<td>Vesicle</td>
<td>In a neuron, a vesicle releases neurotransmitters at the synapse.</td>
</tr>
<tr>
<td>Receptor</td>
<td>In a neuron, a receptor receives neurotransmitters at the synapse.</td>
</tr>
<tr>
<td>Symptom</td>
<td>A sign indicating the presence of an illness.</td>
</tr>
<tr>
<td></td>
<td>Tremor</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>11.</td>
<td>Diagnose</td>
</tr>
<tr>
<td>12.</td>
<td>Treat</td>
</tr>
<tr>
<td>13.</td>
<td>Substantia Nigra</td>
</tr>
<tr>
<td>14.</td>
<td>Biomaterial</td>
</tr>
<tr>
<td>15.</td>
<td>Minimally Invasive</td>
</tr>
<tr>
<td>16.</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>17.</td>
<td>Deep Brain Stimulation</td>
</tr>
<tr>
<td>18.</td>
<td>Medical Device</td>
</tr>
</tbody>
</table>
Learning Activities

Children will:

• Watch a video with Michael J. Fox discussing symptoms of Parkinson’s disease.
• Discuss what it might be like living with Parkinson’s disease.
• Learn about neurons communicating using neurotransmitters, in particular dopamine.
• Demonstrate how dopamine carries a message across a synapse with students acting as neuron vesicles and receptors.
• Engage in talk and discussion on medical devices to treat Parkinson’s disease using Deep Brain Stimulation.
• Participate in a group activity to construct a medical device which is minimally invasive to treat Parkinson’s disease.
• Present their work to the class.
• Evaluate their work using a worksheet.

Extra Info / Files

<table>
<thead>
<tr>
<th>Web Address</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.webmd.com/parkinsons-disease/ss/slideshow-index</td>
<td>Web MD: Slideshow: A visual guide to Parkinson’s</td>
</tr>
</tbody>
</table>

Resources Provided

• Teacher Lesson Plan
• PowerPoint to guide lesson
• Evaluation worksheet
• Optional: “Draw My Parkinson’s”-An 8 minute stop motion animation made by CÚRAM researcher, Joelle Bizeau, explaining the cause of Parkinson’s disease and treatments being developed by CÚRAM using biomaterials. The film can be viewed using the following link: https://www.youtube.com/watch?v=aNND-ORY4tI.

• Optional: “Feats of Modes Valour”-A 26 minute documentary produced by CÚRAM investigating three individuals’ challenging physical reality of living with Parkinson’s disease. The film also covers biomaterials-based treatments for the disease being developed by CÚRAM researchers. A trailer to the film can be viewed using the following link: https://vimeo.com/184564095. The film is available on request by contacting Sarah at sarah.gundy@nuigalway.ie.

Materials Needed

• In advance of the lesson to make jelly “brains”:
 o Blocks of 135g jelly depending on how many “brains” you are making (1 block makes 200mL)
 o Muffin liners
 o Muffin tin
 o Black marker (**Note**: Must be permanent)
 o Liquid measuring cup (up to 100mL)
 o Water
 o Microwave
 o Microwave safe bowl
• For the demonstration:
 o Three plastic eggs
 o A piece of paper with “Jump” written on it
 o A piece of paper with “Three times” written on it
 o A piece of paper with “Forwards and backwards” written on it
 o Optional: Long piece of string

• For the activity:
 o Straws
 o Pipe cleaners
 o Ice lolly sticks
 o Toothpicks
 o Paper clips
 o Scissors
 o Tape

Instructions
• In advance of the lesson, prepare the jelly “brains”:
 o Place muffin liners into a muffin tin.
 o Using the black marker, make a dot on the bottom of the muffin liner approximately ½cm in diameter.
 o Break up the block of jelly into cubes.
 o Place the jelly cubes in a microwave safe bowl.
 o Add 100mL water and heat for approximately 1 minute or according to the recommendations on the package.
 o Stir until completely dissolved.
- Make up to 200mL with cold water. **Note:** The jelly needs to be concentrated so make up to 200mL rather than the amount recommended on the package.

- Pour the mixture into muffin liners and refrigerate to set. **Note:** Make sure enough jelly is poured into the muffin liner so that the brain is deep enough for the students to work with.

- Repeat until enough jelly “brains” are made for the class.

- **For the demonstration:**
 - Prepare three plastic eggs carrying separate parts of the message:
 - Egg 1 = “Jump”
 - Egg 2 = “Three times”
 - Egg 3 = “Forwards and Backwards”
 - Form a first line of three students—This line represents neuron 1, each student represents a vesicle on neuron 1.
 - Form a second line of three students—This line represents neuron 2, each student represents a receptor on neuron 2.
 - Optional: You can put a large string around the three students in each line to emphasise that they are part of one neuron.
 - Only **two** of the students in neuron 1 get a plastic egg containing a message inside of it. **Note:** The two plastic eggs represent low levels of dopamine:
 - Egg 1 = “Jump”
 - Egg 2 = “Three times”
o The two students in neuron 1 throw the plastic eggs across the “synapse” to two students in neuron 2.
o The students in neuron 2 perform the task given by combining the messages in the two plastic eggs.
o Since only two plastic eggs crossed the synapse, the students in neuron 2 did not receive the entire message and will not be able to perform the task properly. (They will “jump three times”, but not “forwards and backwards”)
o All three of the students in neuron 1 get a plastic egg containing a message inside of it. **Note:** The three plastic eggs represent correct levels of dopamine:
 - Egg 1 = “Jump”
 - Egg 2 = “Three times”
 - Egg 3 = “Forwards and Backwards”
o The three students in neuron 1 throw the plastic eggs across the “synapse” to three students in neuron 2.
o The students in neuron 2 perform the task given by combining the messages in the three plastic eggs.
o Since three plastic eggs crossed the synapse, the students in neuron 2 received the entire message and will be able to perform the task properly. (They will “jump three times forwards and backwards”)

• For the activity:
o Divide the class into groups of two, three or four depending on class size and amount of materials.
o Each group is given scissors, tape, and a “Biomedical Engineering Kit” containing any assortment of the
following: Straws, pipe cleaners, ice lolly sticks, toothpicks, and/or paper clips.

- The students plan and build a medical device for Deep Brain Stimulation to treat Parkinson’s disease on their jelly brain.

- **Note:** The medical device must: 1) Be able to reach deep into the brain, 2) Not cause damage to the brain, and 3) Be easy for the surgeon to use.

- Once the medical device is built, each group is given a jelly brain.

- Using the black dot at the bottom of the muffin liner as a target, the students test the medical device on their jelly brain. The human brain feels the same as jelly!

- The students examine the damage caused to their jelly brains after testing their medical device.

Teachers’ Tips

- Flashcards can be used to introduce new language for younger children at the beginning of the lesson.

- Brain moulds can be used in place of muffin liners and can be purchased from www.amazon.co.uk. Just make sure to line the moulds with a little bit of olive oil before filling with the jelly mixture. Ones that we have found that work well can be viewed using the following link: https://www.amazon.co.uk/dp/B003AQB2XK/ref=pe_3187911_185740111_TE_item.
• Do not hand out the jelly brains until after the students have designed their medical devices, otherwise they will just play with the jelly.
• Have some extra jelly brains as they tend to get seriously damaged!

Methodologies
• Talk and discussion
• Use of open questioning
• Active learning
• Guided and discovery learning
• Collaborative learning
• Free exploration of materials
• Investigative approach

Assessment
• Self-assessment – evaluation worksheet
• Teacher observation – construction of medical devices
• Teacher questioning – talk and discussion

Linkage and Integration
• **Maths** – problem solving
• **STEM** – I.T. / Engineering
• **Art** – construction
• **S.P.H.E.** – working together co-operatively
• **English** – oral language through talk and discussion and presenting their work

Differentiation by:

- Teaching style
- Support
- Task
What Do We Want to Know?

What is Parkinson’s disease?

What is a neuron?

How does the brain send messages to the body?

Parkinson’s Disease

Michael J. Fox is a famous actor who now has Parkinson’s disease

Watch a video of Michael J. Fox

Listen as he describes what it is like living with Parkinson’s disease

Video can be accessed at: https://www.youtube.com/watch?v=ECKPVTZlfP8
Neuron-Nerve Cell

Cell Body

Dendrite

Axon

Slide 5

Neuron 1

The region where two neurons meet is called the **synapse**

The synapse is a gap between the **neurons** that the message must jump across

Chemicals, called **neurotransmitters**, carry the messages across the gaps

Dopamine is a type of neurotransmitter in the brain

Neuron 2

Neurotransmitters

Slide 6
How Dopamine Carries a Message

How does the message travel from the brain to muscles?

Neurons at a Synapse

Presynaptic neuron

Brain

Postsynaptic neuron

Muscle
Dopamine at a Synapse

1. Dopamine starts at the vesicles of the presynaptic neuron
2. Travels across the synapse, and
3. Is received by the receptors of the postsynaptic neuron

Result: Muscles move properly

If Dopamine Levels are Too Low

1. Low levels of dopamine start at the vesicles of the presynaptic neuron
2. Travel across the synapse, and
3. Not enough is received by the receptors of the postsynaptic neuron

Result: Muscles do not move properly
Demonstration: Students Act as Neurons

1. Form a first line of three students
 - The first line represents the presynaptic neuron
 - Each student represents a vesicle on the presynaptic neuron

2. Form a second line of three students
 - The second line represents the postsynaptic neuron
 - Each student represents a receptor on the postsynaptic neuron

If Dopamine Levels are Too Low

3. Two of the students in the presynaptic neuron get a plastic egg containing a message inside of it. The two plastic eggs represent low levels of dopamine.

4. The two students in the presynaptic neuron throw the plastic eggs across the “synapse” to two students in the postsynaptic neuron.

5. The two students in the postsynaptic neuron perform the task given by combining the messages in the two plastic eggs.

6. Since only two plastic eggs crossed the synapse, the students in the postsynaptic neuron did not receive the entire message and will not be able to perform the task properly.
If Dopamine Levels are Correct

7. Three of the students in the presynaptic neuron get a plastic egg containing a message inside of it. The three plastic eggs represent correct levels of dopamine.

8. The three students in the presynaptic neuron throw the plastic eggs across the “synapse” to three students in the postsynaptic neuron.

9. The three students in the postsynaptic neuron perform the task given by combining the messages in the three plastic eggs.

10. Since three plastic eggs crossed the synapse, the students in the postsynaptic neuron received the entire message and will be able to perform the task properly.

Cause of Parkinson’s Disease

Neurons that make dopamine start to die.

Dopamine tells the brain to move muscles.

If dopamine levels are too low, muscles will not move as they should.

Low levels of dopamine results in tremors, stiff joints, a slow walk and many other symptoms.
Slide 15

In Parkinson's disease, neurons in the substantia nigra are damaged which causes too little dopamine to be released.

Dopamine is released by a structure in the brain called the substantia nigra.

Slide 16

An electrode is surgically placed deep in the brain.

Deep Brain Stimulation

Works like a pacemaker for the brain.

The electrode is connected to a battery placed under the skin below the collarbone.

Electrical signals are sent to control activity in the brain.
Activity: Designing a medical device

Goal: To design and build a medical device to reach deep in the brain for deep brain stimulation

Students work in groups of 3 or 4

1. Plan
2. Build
3. Test
4. Assess

1. The Plan

The medical device must:

- Be able to reach deep in the brain.
- Not cause damage to the brain.
- Be easy for the surgeon to use.
2. Build

- Thin/Thick straws
- Paper clips
- Toothpicks
- Discuss appropriate materials from selection
- Thin/Thick wire/pipe cleaners
- Scissors
- Lollipop sticks
- Sticky tape

3. Test

- Test the medical device on the model brain made from jelly.
- Examine the damage caused to your “brain” after testing the medical device.
- The black dot at the bottom of the jelly is the area to reach with the medical device.
- The human brain feels the same as jelly!
4. Assess

Do you think your medical device worked? Why or why not?

Show your medical device to the rest of the class.

How could you make your medical device work better?

Additional Resource

Slide show: A Visual Guide to Parkinson’s Disease

What causes Parkinson’s?

http://www.webmd.com/parkinsons-disease/ss/slideshow-parkinsons-overview
References:
1. www.flickr.com
2. www.pixabay.com
3. smart.servier.com
4. commons.wikimedia.org
5. Gray’s Anatomy

Acknowledgements:

Sincere thanks to all of the researchers who gave lectures and generously gave their time throughout the course.

Thanks also to all the participating teachers who very kindly shared ideas and resources.
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073.

This project has been funded by the European Union Seventh Framework Programme under Marie Curie Initial Training Networks (FP7-PEOPLE-2012-ITN) and Grant Agreement Number 317304 (AngioMatTrain). This project has also been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Networks and Grant Agreement Numbers 676408 (BrainMatTrain) and 676338 (Tendon Therapy Train).
Self-Assessment: Neuron transmission

Parkinson's disease

Medical device to treat Parkinson's disease

Part 1: Pre-requisite learning:

<table>
<thead>
<tr>
<th>Number</th>
<th>Topic</th>
<th>Green</th>
<th>Orange</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Describe the main parts of a neuron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Understand how an impulse is transmitted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Understand what a synapse is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Understand the terms presynaptic neuron and postsynaptic neuron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Understand the role of neurotransmitters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Know that dopamine is an important neurotransmitter in the brain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Describe some of the symptoms of Parkinson's disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Know the cause of Parkinson's disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Know some possible treatments of this disease and how they work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Understand the concept of Deep Brain stimulation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Green**: I understand this well.
- **Orange**: I am not sure. I need to look up some of the terms used.
- **Red**: I do not understand this concept. I need to go back over this.
Part 2: Activity to demonstrate how a neurotransmitter works. This activity explains how dopamine works in the brain.

<table>
<thead>
<tr>
<th>Number</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Understand that a line of three students represents a presynaptic neuron</td>
</tr>
<tr>
<td>2.</td>
<td>Understand that when the electrical impulse reaches the end of the neuron it has to get the message across the synapse</td>
</tr>
<tr>
<td>3.</td>
<td>Understand that the plastic eggs represent the neurotransmitter dopamine</td>
</tr>
<tr>
<td>4.</td>
<td>Understand that the dopamine carries the message across the synapse and this stimulates the next neuron</td>
</tr>
<tr>
<td>5.</td>
<td>Understand that a second line of three students represents the postsynaptic neuron</td>
</tr>
<tr>
<td>6.</td>
<td>Understand that if there is not enough dopamine then the message does not get across and the postsynaptic neuron is not stimulated</td>
</tr>
<tr>
<td>7.</td>
<td>This activity helped me to understand how neurotransmitters work and how important they are</td>
</tr>
<tr>
<td>8.</td>
<td>I enjoyed carrying out this activity in class</td>
</tr>
</tbody>
</table>

Green: I understand this well.
Orange: I am not sure. I need to look up some of the terms used.
Red: I do not understand this concept. I need to go back over this.
Part 3: Evaluation of medical device activity:

The medical device must:

<table>
<thead>
<tr>
<th>Number</th>
<th>Criteria</th>
<th>Met</th>
<th>Not Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Be biocompatible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Not cause an immune response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Be minimally invasive – not cause damage to surrounding healthy brain tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Be capable of delivering an electric current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Be easy for a surgeon to use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Be affordable to use for treatment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did you learn from this activity? _________________________Yes/No

Did you enjoy the activity? _________________________Yes/No

Suggestions for improvement:

__
__
__
__
FACTS ABOUT MEDTECH IN IRELAND

- Ireland is the second largest exporter of MedTech products in Europe.
- Ireland’s MedTech sector employs 29,000 people across 450 companies.
- Ireland has the highest number of people working in the MedTech industry than in any other European country, per head of population.
- 18 of the world’s top 25 MedTech companies have a base in Ireland.
- Galway employs one third of the country’s MedTech employees.

MedTech companies with bases in Ireland produce Medical Devices to repair damage to both the Central Nervous System and Peripheral Nervous System. Boston Scientific’s branch in Clonmel designs, develops and manufactures Deep Brain Stimulators and Spinal Cord Stimulators. Medtronic, headquartered in Dublin, is also a producer of Deep Brain Stimulation and Spinal Cord Stimulation products. Additionally, Stryker (with branches in Cork and Limerick) produces two conduits to repair peripheral nerve damage.

Source: IDA Ireland, 2017
The participants of the 2017-2018 Teachers in Residence Programme: Vivienne Kelly, Louise Lynch, Mary McDonald, Anna McGuire, Sinéad O'Sullivan, Karen Conway, Claire Cunningham, Ali Donald, Anne Hession and Mairead McManus.

Niamh Burke and Rachel Duggan, the participants of the 2015-2016 Teachers in Residence Programme.

Sadie Cramer, the Visual Artist who designed the graphics and layouts of the lesson plans.

The researchers who lectured to and helped develop the lesson plans with the educators: Emmanuela Bovo, James Britton, Hector Capella, Joshua Chao, Ankit Chaturvedi, Paolo Contessotto, Mikey Creane, Marc Fernández, Cathal Ó Flathart, Hakima Flici, Ana Fradinho, Silvia Cabre Gimenez, Jill McMahon, Luis Martins, Renza Spelat, Maura Tilbury, Alexander Trottier and Dimitrios Zeugolis.

Veronica McCauley and Kevin Davison, from the School of Education, and Matt Wallen, Principal of Knocknacarra Educate Together National School, who contributed to the development of the programme.

The individuals who presented to the educators about on-going outreach programmes: Claire Concannon, Muriel Grenon, Enda O’Connell, Jackie O’Dowd and Brendan Smith.

Nóirín Burke and all the staff at the National Aquarium for the workshops given to the primary students.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073.

This project has been funded by the European Union Seventh Framework Programme under Marie Curie Initial Training Networks (FP7-PEOPLE-2012-ITN) and Grant Agreement Number 317304 (AngioMatTrain). This project has also been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Networks and Grant Agreement Numbers 676408 (BrainMatTrain) and 676338 (Tendon Therapy Train).